Preferred Device

Advance Information

TMOS 7 E-FET™ High Energy Power FET

N-Channel Enhancement-Mode Silicon Gate

This advanced TMOS E-FET is designed to withstand high energy in the avalanche and commutation modes. The new energy efficient design also offers a drain-to-source diode with a fast recovery time. Designed for high voltage, high speed switching applications in power supplies, converters and PWM motor controls. These devices are particularly well-suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

New Features of TMOS 7

- Ultra Low On–Resistance Provides Higher Efficiency
- Reduced Gate Charge

Features Common to TMOS 7 and TMOS E-FETS

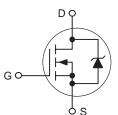
- Avalanche Energy Specified
- Diode Characterized for Use in Bridge Circuits
- IDSS and VDS(on) Specified at Elevated Temperature

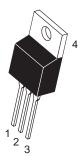
MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	600	Vdc
Drain–Gate Voltage ($R_{GS} = 1.0 \text{ M}\Omega$)	V _{DGR}	600	Vdc
Gate–Source Voltage — Continuous — Non–Repetitive (t _p ≤ 10 ms)	V _{GS} V _{GSM}	±20 ±30	Vdc
Drain — Continuous — Continuous @ 100°C — Single Pulse (t _p ≤10 μs)	I _D	10 8.0 35	Adc
Total Power Dissipation Derate above 25°C	PD	201 1.61	Watts W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to 150	°C
Single Drain–to–Source Avalanche Energy — Starting $T_J = 25^{\circ}C$ ($V_{DD} = 100 \text{ V}, V_{GS} = 10 \text{ Vdc},$ $I_L = 10 \text{ A}, L = 8 \text{ mH}, R_G = 25 \Omega$)	EAS	400	mJ
Thermal Resistance — Junction-to-Case — Junction-to-Ambient	R _θ JC R _θ JA	0.62 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 10 seconds	TL	260	°C

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ON Semiconductor


Formerly a Division of Motorola http://onsemi.com


TMOS POWER FET 10 AMPERES

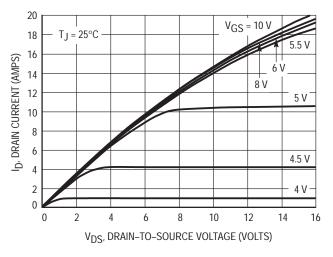
600 VOLTS RDS(on) = 0.75 Ω

TO-220AB CASE 221A STYLE 5

PIN ASSIGNMENT			
1	Gate		
2	Drain		
3	Source		
4	Drain		

ORDERING INFORMATION

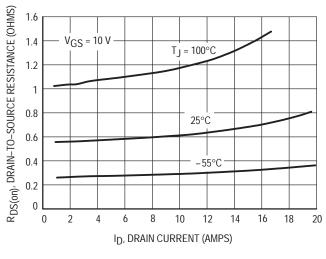
Device	Package	Shipping
MTP10N60E7	TO220AB	50 Units/Rail


Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise noted)

Continue	Cr	Symbol	Min	Тур	Max	Unit	
Vocation Control Co	OFF CHARACTERISTICS						
Zero Gate Voltage Collector Current (VDs = 800 Vdc, Vgs = 0 Vdc, Vg	$(V_{GS} = 0 \text{ Vdc}, I_D = 0.25 \text{ mAdc})$		V(BR)DSS			_	
(VDS = 600 Vdc, VGS = 0 Vdc) (VDS = 600 Vdc, VDS = 0) (GSS(f) 100 0 0 0 0 0 0 0 0	·	<u> </u>		_	700	_	
Common C	$(V_{DS} = 600 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$		I _{DSS}	_ _	_		μAdc
Gate Threshold Voltage D = 0.25 mA, VDS = VGS Temperature Coefficient (Negative) Static Drain-to-Source On-Resistance (VGS = 10 Vdc, ID = 5 Adc) RDS(on) - 0.58 0.75 Ohm MV/C	Gate-Body Leakage Current (V		_	_		nAdc	
	ON CHARACTERISTICS (1)						
Drain-to-Source On-Voltage	Gate Threshold Voltage $I_D = 0.25 \text{ mA}, V_{DS} = V_{GS}$		VGS(th)				Vdc mV/°C
Drain-to-Source On-Voltage (VGS = 10 Vdc, lp = 10 Adc) (VGS = 10 Vdc, lp = 5 Adc, T, l = 125°C) VDS(on) 9.0 9.0 Vdc (VGS = 10 Vdc, lp = 5 Adc, T, l = 125°C) VDS(on) 7.9 Vdc (VGS = 10 Vdc, lp = 5 Adc, T, l = 125°C) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on) VDS(on)	Static Drain-to-Source On-Res	sistance (V _{GS} = 10 Vdc, I _D = 5 Adc)	R _{DS(on)}	_	0.58	0.75	Ohm
TynAMic CHARACTERISTICS Input Capacitance (VDS = 25 Vdc, VGS = 0 Vdc, f = 1.0 MHz) Coss - 190 270 Crss - 4.0 10 Crss - 4.0 - 4.0 Crss - 4.0 - 4.0 Crss - 4.0 Cr	Drain-to-Source On-Voltage (VGS = 10 Vdc, I _D = 10 Adc)			_	_		Vdc
Input Capacitance Output Capacitance Output Capacitance Cigs - 3300 4620 PF	Forward Transconductance (VD	os = 15 Vdc, I _D = 5 Adc)	9FS	3.0	9.0	_	mhos
Output Capacitance VDS = 25 Vdc, VGS = 0 Vdc, f = 1.0 MHz	DYNAMIC CHARACTERISTICS						
Transfer Capacitance f = 1.0 MHz Coss — 190 270	Input Capacitance		C _{iss}	_	3300	4620	pF
Transfer Capacitance Crss - 4.0 10	Output Capacitance		C _{oss}	_	190	270	
Turn-On Delay Time (VDD = 300 Vdc, ID = 10 Adc, VGS = 10 Vdc, RG = 9.1 Ω) Turn-Off Delay Time (VDD = 400 Vdc, ID = 10 Adc, VGS = 10 Vdc, RG = 9.1 Ω) Turn-Off Delay Time (VDD = 400 Vdc, ID = 10 Adc, VGS = 10 Vdc) Turn-Off Delay Time (VDS = 400 Vdc, ID = 10 Adc, VGS = 10 Vdc) QT	Transfer Capacitance	I = 1.0 WH2)		_	4.0	10	
Turn-On Delay Time Rise Time Rise Time (VDD = 300 Vdc, ID = 10 Adc, VGS = 10 Vdc, RG = 9.1 Ω) Turn-Off Delay Time VDD = 300 Vdc, ID = 10 Adc, VGS = 10 Vdc, RG = 9.1 Ω) Turn-Off Delay Time Turn-Off Delay	SWITCHING CHARACTERISTIC	es (2)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		t _{d(on)}	_	20	40	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		<u> </u>	_	28	60	1
Fall Time	Turn-Off Delay Time		t _{d(off)}	_	58	120	1
$ (V_{DS} = 400 \text{ Vdc}, I_{D} = 10 \text{ Adc}, \\ V_{GS} = 10 \text{ Vdc}) $	Fall Time	,	t _f	_	36	70	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate Charge		Q _T	_	41	60	nC
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Q ₁	_	13	_	
Forward On–Voltage(1) $ \begin{pmatrix} (I_S = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc}) \\ (I_S = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc}) \\ (I_S = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc, T}_{J} = 125^{\circ}\text{C}) \end{pmatrix} \qquad \begin{matrix} V_{SD} \\ - & 0.83 \\ - & 0.7 \end{matrix} \qquad \begin{matrix} V_{SD} \\ - & 0.7 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} V_{SD} \\ - & 0.7 \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} V_{SD} \\ - & 0.7 \end{matrix} \qquad \end{matrix} $			Q ₂	_	6.8	_	
Forward On–Voltage(1) $ \begin{pmatrix} (I_S = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc}) \\ (I_S = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc}) \\ (I_S = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc, T}_{J} = 125^{\circ}\text{C}) \end{pmatrix} \qquad \begin{matrix} V_{SD} \\ - & 0.83 \\ - & 0.7 \end{matrix} \qquad \begin{matrix} V_{SD} \\ - & 0.7 \end{matrix} \qquad \end{matrix} \end{matrix} \qquad \begin{matrix} V_{SD} \\ - & 0.7 \end{matrix} \qquad \end{matrix} \end{matrix} \end{matrix} \end{matrix} \end{matrix} \qquad \begin{matrix} V_{SD} \\ - & 0.7 \end{matrix} \qquad \end{matrix} $			Q ₃	_	20	_	
$ (I_S = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc)} \\ (I_S = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc, T}_J = 125^{\circ}\text{C}) \\ & - & 0.83 \\ 0.7 & - & - \\ & & 0.7 & - \\ & & & - & \\ & & & & - \\ & & & &$	SOURCE-DRAIN DIODE CHAR	ACTERISTICS	l				
$(I_{S} = 10 \text{ Adc, V}_{GS} = 0 \text{ Vdc,} \\ \text{dig/dt} = 100 \text{ A/}\mu\text{s}) \\ \hline \\ Reverse Recovery Stored \\ Charge \\ \hline \\ NTERNAL PACKAGE INDUCTANCE \\ \hline Internal Drain Inductance \\ (Measured from contact screw on tab to center of die) \\ (Measured from the drain lead 0.25" from package to center of die) \\ Internal Source Inductance \\ L_{S} \\ \hline \\ L_{S} \\ \hline \\ L_{S} \\ \hline \\ L_{S} \\ \hline \\ \\ \\ \\ \\ \\ L_{S} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Forward On–Voltage ⁽¹⁾		V _{SD}	_		l	Vdc
	Reverse Recovery Time	(IS = 10 Adc, VGS = 0 Vdc, dis/dt = 100 A/us)	t _{rr}	_	485	_	ns
			ta	_	158	_	1
Charge NTERNAL PACKAGE INDUCTANCE Internal Drain Inductance (Measured from contact screw on tab to center of die) (Measured from the drain lead 0.25" from package to center of die) Internal Source Inductance LS NH NH LS			t _b	_	327	_	1
Internal Drain Inductance (Measured from contact screw on tab to center of die) (Measured from the drain lead 0.25" from package to center of die) Internal Source Inductance LS nH - 3.5 - 4.5 - Internal Source Inductance	•		Q _{RR}	_	4.0	_	μС
(Measured from contact screw on tab to center of die) (Measured from the drain lead 0.25" from package to center of die) Internal Source Inductance — 3.5 — 4.5 — Us	NTERNAL PACKAGE INDUCTA	NCE					
	(Measured from contact screw on tab to center of die)		LD	_ _ _		_ _ _	nH
		LS	_	7.5	_	1	

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperature.


TYPICAL ELECTRICAL CHARACTERISTICS

20
17.5 $V_{DS} \ge 10 \text{ V}$ 15
12.5
10
7.5 $T_{J} = 100^{\circ}\text{C}$ 25°C
25°C
0
0
1
2
3
4
5
6
7
8 V_{GS} , GATE-TO-SOURCE VOLTAGE (VOLTS)

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

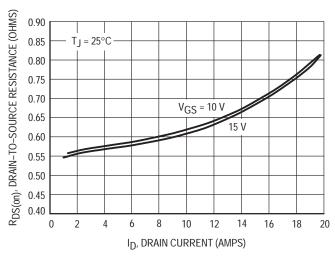
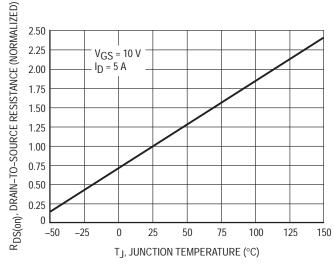



Figure 3. On–Resistance versus Drain Current and Temperature

Figure 4. On–Resistance versus Drain Current and Gate Voltage

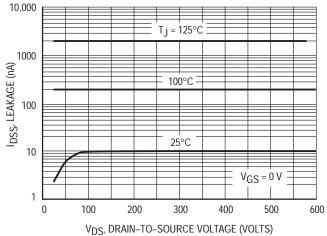


Figure 5. On–Resistance Variation with Temperature

Figure 6. Drain-To-Source Leakage Current versus Voltage

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain–gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current ($I_{G(AV)}$) can be made from a rudimentary analysis of the drive circuit so that

$$t = Q/I_{G(AV)}$$

During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, V_{SGP} . Therefore, rise and fall times may be approximated by the following:

$$t_r = Q_2 \times R_G/(V_{GG} - V_{GSP})$$

 $t_f = Q_2 \times R_G/V_{GSP}$

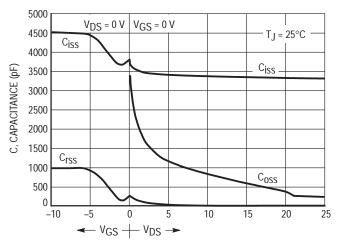
where

 $V_{GG} \!=\! \text{the gate drive voltage, which varies from zero to } V_{GG}$

 R_G = the gate drive resistance

and Q2 and VGSP are read from the gate charge curve.

During the turn—on and turn—off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:


$$t_{d(on)} = R_G C_{iss} In \left[V_{GG} / (V_{GG} - V_{GSP}) \right]$$

$$t_{d(off)} = R_G C_{iss} In (V_{GG}/V_{GSP})$$

The capacitance (C_{iss}) is read from the capacitance curve at a voltage corresponding to the off-state condition when calculating $t_{d(on)}$ and is read at a voltage corresponding to the on-state when calculating $t_{d(off)}$.

At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

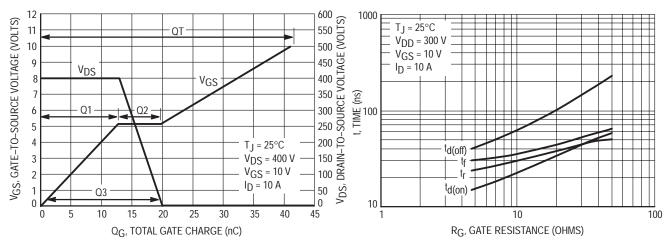


Figure 8. Gate-To-Source and Drain-To-Source
Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

The switching characteristics of a MOSFET body diode are very important in systems using it as a freewheeling or commutating diode. Of particular interest are the reverse recovery characteristics which play a major role in determining switching losses, radiated noise, EMI and RFI

System switching losses are largely due to the nature of the body diode itself. The body diode is a minority carrier device, therefore it has a finite reverse recovery time, $t_{\rm TT}$, due to the storage of minority carrier charge, $Q_{\rm RR}$, as shown in the typical reverse recovery wave form of Figure 15. It is this stored charge that, when cleared from the diode, passes through a potential and defines an energy loss. Obviously, repeatedly forcing the diode through reverse recovery further increases switching losses. Therefore, one would like a diode with short $t_{\rm TT}$ and low $Q_{\rm RR}$ specifications to minimize these losses.

The abruptness of diode reverse recovery effects the amount of radiated noise, voltage spikes, and current ringing. The mechanisms at work are finite irremovable

circuit parasitic inductances and capacitances acted upon by high di/dts. The diode's negative di/dt during t_a is directly controlled by the device clearing the stored charge. However, the positive di/dt during t_b is an uncontrollable diode characteristic and is usually the culprit that induces current ringing. Therefore, when comparing diodes, the ratio of t_b/t_a serves as a good indicator of recovery abruptness and thus gives a comparative estimate of probable noise generated. A ratio of 1 is considered ideal and values less than 0.5 are considered snappy.

Compared to ON Semiconductor standard cell density low voltage MOSFETs, high cell density MOSFET diodes are faster (shorter t_{rr}), have less stored charge and a softer reverse recovery characteristic. The softness advantage of the high cell density diode means they can be forced through reverse recovery at a higher di/dt than a standard cell MOSFET diode without increasing the current ringing or the noise generated. In addition, power dissipation incurred from switching the diode will be less due to the shorter recovery time and lower switching losses.

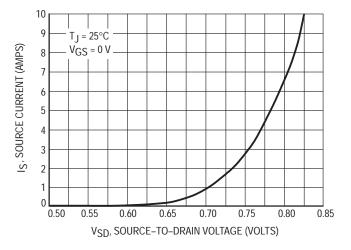


Figure 10. Diode Forward Voltage versus Current

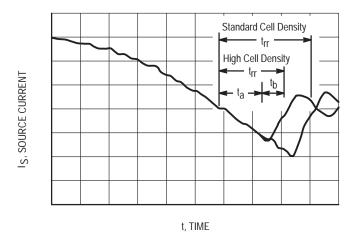


Figure 11. Reverse Recovery Time (trr)

SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain—to—source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance — General Data and Its Use."

Switching between the off–state and the on–state may traverse any load line provided neither rated peak current (IDM) nor rated voltage (VDSS) is exceeded, and that the transition time (t_r , t_f) does not exceed 10 μ s. In addition the total power averaged over a complete switching cycle must not exceed ($T_{J(MAX)} - T_C$)/($R_{\theta JC}$).

A power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For

reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and must be adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non–linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E-FETs can withstand the stress of drain-to-source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_D), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 13). Maximum energy at currents below rated continuous I_D can safely be assumed to equal the values indicated.

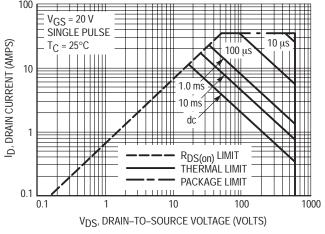


Figure 12. Maximum Rated Forward Biased Safe Operating Area

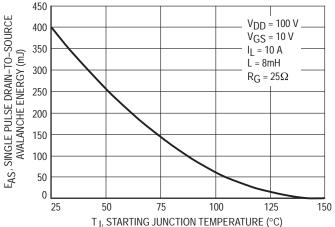


Figure 13. Maximum Avalanche Energy versus Starting Junction Temperature

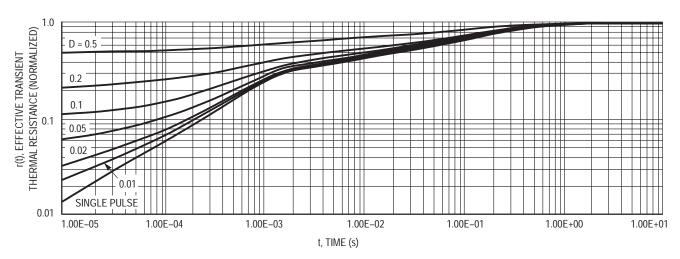


Figure 14. Thermal Response

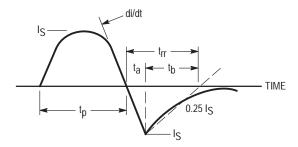
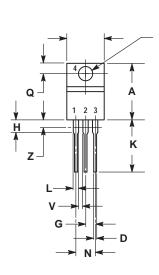
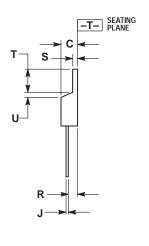




Figure 15. Diode Reverse Recovery Waveform

PACKAGE DIMENSIONS

TO-220AB CASE 221A-09 ISSUE Z

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14 5M 1982
- CONTROLLING DIMENSION: INCH.
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INC	INCHES		IETERS
DIM	MIN	MAX	MIN MAX	
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 5: PIN 1. G

N 1. GATE 2 DRAIN

3. SOURCE

4. DRAIN

E-FET is a trademark of Semiconductor Components Industries, LLC. TMOS is a registered trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

USA/EUROPE Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line*: 303-675-2167

800–344–3810 Toll Free USA/Canada *To receive a Fax of our publications

N. America Technical Support: 800-282-9855 Toll Free USA/Canada

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549

Phone: 81–3–5487–8345 **Email**: r14153@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.